Home
MACE Data File
Compound List
Compound Structures
Contributors
Releases
Privacy
Schulz Lab
|
MACE - Mass Spectra for Chemical Ecology
Currently compounds up to MACE R6 are listed.
Library No. |
Compound |
Reference |
SC-1 |
Methyl syn-2,4-dimethylheptadecanoate |
1 |
SC-2 |
Methyl anti-2,4-dimethylheptadecanoate |
1 |
SC-3 |
Tetradecyl syn-2,4-dimethylheptadecanoate |
1 |
SC-4 |
Tetradecyl anti-2,4-dimethylheptadecanoate |
1 |
SC-5 |
11,15-Dimethylhentriacontane |
1 |
SC-6 |
(E)-4,8-Dimethyl-1,3,7-nonatrien-5-yl acetate |
2 |
SC-7 |
(E)-4,8-dimethyl-1,3,7-nonatrien-5-ol |
2 |
SC-8 |
(E)-4,8-dimethyl-1,3,7-nonatrien-5-one |
2 |
SC-9 |
Dehydrojasmone |
2 |
SC-10 |
Isojasmol |
2 |
SC-11 |
Isojasmyl acetate |
2 |
SC-12 |
epi-Isojasmol |
2 |
SC-13 |
1-Methylene-1H-pyrrolizine |
3 |
SC-14 |
(E)-2,6-Dimethyl-2,6,8-nonatrien-4-one |
4 |
SC-15 |
(E)-2,3-Epoxy-2,6-dimethyl-6,8-nonadien |
4 |
SC-16 |
(E)-2,6-Dimethyl-6,8-nonadien-4-one |
4 |
SC-17 |
Hydroxydanaidal |
5 |
SC-18 |
Hexyl (E)-2,3-dihydrofarnesoate |
6 |
SC-19 |
(Z)-3-Hexenyl (E)-2,3-dihydrofarnesoate |
6 |
SC-20 |
3-Oxohexyl (E)-2,3-dihydrofarnesoate |
6 |
SC-21 |
3-Oxooctyl (E)-2,3-dihydrofarnesoate |
6 |
SC-22 |
Isopentyl (E)-2,3-dihydrofarnesoate |
6 |
SC-23 |
Isoprenyl (E)-2,3-dihydrofarnesoate |
6 |
SC-24 |
Benzyl (E)-2,3-dihydrofarnesoate |
6 |
SC-25 |
2-Phenylethyl (E)-2,3-dihydrofarnesoate |
6 |
SC-26 |
Hexyl geranylcitronellate |
6 |
SC-27 |
(Z)-3-Hexenyl geranylcitronellate |
6 |
SC-28 |
3-Oxohexyl geranylcitronellate |
6 |
SC-29 |
3-Oxohexyl 3-methyl-2-butenoate |
6 |
SC-30 |
3-Oxohexyl isovalerate |
6 |
SC-31 |
3-Oxohexyl laurate |
6 |
SC-32 |
3-Oxohexyl palmitate |
6 |
SC-33 |
Danaidal |
7 |
SC-34 |
Danaidone |
8 |
SC-35 |
(3Z,6Z,9Z)-3,6,9-Pentacosatriene |
9 |
SC-36 |
(3Z,6Z,9Z)-3,6,9-Heneicosatriene
|
10 |
SC-37 |
(3Z,6Z,9Z)-1,3,6,9-Heneicosatetraene |
11 |
SC-38 |
(6Z,9Z)-6,9-Heneicosadiene |
10 |
SC-39 |
Methyl (Z)-9-hydroxy-6-nonenoate |
3 |
SC-40 |
(Z)-9-Hydroxy-6-nonenoic acid |
3 |
SC-41 |
Methyl 9-hydroxy-6-nonenoate, DMDS derivative |
3 |
SC-42 |
9-Hydroxynonanoic acid |
3 |
SC-43 |
3-Oxooctanol |
6 |
SC-44 |
1-Hydroxyhexan-3-one |
6 |
SC-45 |
Methyl 9-[(9-hydroxynonanoyl)oxy]nonanoate |
3 |
SC-46 |
Methyl 9-{[(Z)-9-hydroxynon-6-enoyl]oxy}nonanoate |
3 |
SC-47 |
Methyl (Z)-9-[(9-hydroxynonanoyl)oxy]non-6-enoate |
3 |
SC-48 |
Methyl (Z)-9-{[(Z)-9-hydroxynon-6-enoyl]oxy}non-6-enoate |
3 |
SC-49 |
3-Ethyl-1,8-dimethyl-2,9-dioxabicyclo[3.3.1]non-7-en-6-one |
12 |
SC-50 |
6-Ethyl-2-methyl-2,3-dihydro-4H-pyran-4-one |
13 |
SC-51 |
Methyl hydroxydanaidoate |
14 |
SC-52 |
5-Ethyl-4-undecanone |
15 |
SC-53 |
6-Hydroxy-4-dodecanolide |
16 |
SC-54 |
2-Eicosyl-5-pentyltetrahydrofuran |
14 |
SC-55 |
Methyl (E)-7-oxotetradec-11-enoate |
17 |
SC-56 |
N-Isobutylmethanesulfinamide |
18 |
SC-57 |
N-Isopentylmethanesulfinamide |
18 |
SC-58 |
N,N'-Diisobutyloxalamide |
18 |
SC-59 |
(E)-N-(2-Methylbutyl)-1-phenylmethanimine |
18 |
SC-60 |
(E)-1-(Furan-2-yl)-N-isobutylmethanimine |
18 |
SC-61 |
(E)-1-(Furan-2-yl)-N-(2-methylbutyl)methanimine |
18 |
SC-62 |
(E)-4-((Isobutylimino)methyl)phenol |
18 |
SC-63 |
(E)-4-((Isopentylimino)methyl)phenol |
18 |
SC-64 |
N,N'-Diisobutylurea |
18 |
SC-65 |
Ithomiolide A |
27 |
SC-66 |
1-O'-Acetylithomiolide A |
28 |
SC-67 |
2,22-Dimethyloctacosane |
29 |
SC-68 |
2,6-Dimethyloctacosane |
29 |
SC-69 |
(4E,8E,12E)-4,8,12-Trimethyl-16-oxoheptadeca-4,8,12-trienyl stearate |
30 |
SC-70 |
(4E,8E,12E)-4,8,12-Trimethyl-16-oxoheptadeca-4,8,12-trienyl oleate |
30 |
SC-71 |
N-(2E,4E)-2,4-dodecadienoyl)homoserine lactone |
31 |
SC-72 |
(4E,8E)-4,8-dimethyl-12-oxotrideca-4,8-dienyl stearate |
30 |
SC-73 |
trans-3,7-Dimethyl-4-octanolide |
32 |
SC-74 |
2,3-Dimethyl-2-hepten-4-olide |
32 |
SC-75 |
cis-3,7-Dimethyl-4-octanolide |
32 |
SC-76 |
beta-Cyclogeraniol |
32 |
SC-77 |
2-Hydroxy-2,6,6-trimethylcyclohexan-1-one |
32 |
SC-78 |
3,7-Dimethyl-2-octen-4-olide |
32 |
SC-79 |
2,6,6-Trimethylcyclohex-2-en-1-one |
32 |
SC-80 |
2-Methylbutyl 2-methylpropyl disulfide |
33 |
SC-81 |
Bis(2-methylbutyl) disulfide |
33 |
SC-82 |
2-Methylbutyl 3-methylbutyl disulfide |
33 |
SC-83 |
3-Methylbutyl 2-methylpropyl disulfide |
33 |
SC-84 |
Butyl 2-methylbutyl disulfide |
33 |
SC-85 |
2-Methylpropyl propyl disulfide |
33 |
SC-86 |
2-Methylbutyl propyl disulfide |
33 |
SC-87 |
Butyl 3-methylbutyl disulfide |
33 |
SC-88 |
Ethyl 2-methylbutyl disulfide |
33 |
SC-89 |
2-Methylbutyl pentyl disulfide |
33 |
SC-90 |
2-Methylpropyl pentyl disulfide |
33 |
SC-91 |
Cinnamomeoventrolide |
34 |
SC-92 |
(2R*,5Z,10S*)-2,6,10-trimethyl-5-undecen-11-olide |
34 |
SC-93 |
(2R*,5E,10R*)-2,6,10-trimethyl-5-undecen-11-olide |
34 |
SC-94 |
(2R*,5Z,10R*)-2,6,10-trimethyl-5-undecen-11-olide |
34 |
SC-95 |
2,24-Dimethylheptacosyl methyl ether |
61 |
SC-96 |
24-Methylheptacosyl methyl ether |
61 |
SC-97 |
2,10,24-Trimethylheptacosyl methyl ether |
61 |
SC-98 |
5-Methylheptacosane |
1 |
SC-99 |
(3E,5E)-Undeca-3,5-dien-2-one |
62 |
SC-100 |
3,5,5-Trimethylcyclohex-3-en-1-yl acetate |
62 |
SC-101 |
5-Ethyl-4-nonanone |
15 |
SC-102 |
3-Ethyl-2-nonanone |
15 |
SC-103 |
2-Ethyldodecanal |
15 |
SC-104 |
3-Ethyl-4,6-nonandione |
15 |
SC-105 |
Amorph-4-en-10b-ol |
63 |
SC-106 |
δ-Cadinol |
63 |
SC-107 |
Θ-Cadinol |
63 |
SC-108 |
Θ-Muurolol |
63 |
SC-109 |
α-Cadinol |
63 |
SC-110 |
Epoxyniaviolide |
64 |
SC-111 |
1,3-Hexanediyl diisobutyrate |
65 |
SC-112 |
3-Ethyl-1,8-dimethyl-2,9-dioxabicyclo[3.3.1]non-7-ene |
12 |
SC-113 |
Octadecyl 2,4,6-trimethyloctanoate |
71 |
SC-114 |
Eicosyl 2,4,6-trimethyloctanoate |
71 |
SC-115 |
Methyl 3,7-dimethyldodecanoate |
71 |
SC-116 |
Pyridin-3-ylmethyl 3,7-dimethyldodecanoate |
71 |
SC-117 |
Pyridin-3-ylmethyl 9-hexadecenoate |
71 |
SC-118 |
14-Methyloctadecyl nicotinate |
71 |
SC-119 |
(Z)-3-Hexenyl citronellate |
72 |
SC-120 |
3-Oxohexyl citronellate |
72 |
SC-121 |
3-Oxooctyl citronellate |
72 |
SC-122 |
Butyl (Z)-dodec-3-enoate |
72 |
SC-123 |
Isobutyl (Z)-dodec-3-enoate |
72 |
SC-124 |
Pentyl (Z)-dodec-3-enoate |
72 |
SC-125 |
3-Methylbutyl (Z)-dodec-3-enoate |
72 |
SC-126 |
Hexyl (Z)-dodec-3-enoate |
72 |
SC-127 |
(Z)-3-Hexenyl (Z)-dodec-3-enoate |
1 |
SC-128 |
Butyl (Z)-dec-3-enoate |
72 |
SC-129 |
Butyl (E)-dec-2-enoate |
72 |
SC-130 |
Butyl (E)-undec-3-enoate |
72 |
SC-131 |
Butyl (E)-tetradec-3-enoate |
72 |
SC-132 |
Isobutyl (E)-tetradec-3-enoate |
72 |
SC-133 |
3-Oxodecyl oleate |
72 |
SC-134 |
(E)-5-Methylhexa-3,5-dien-1-yl oleate |
72 |
SC-135 |
5-Methylhex-4-enyl (E)-2,3-dihydrofarnesoate |
72 |
SC-136 |
(E)-5-Methylhexa-3,5-dienyl (E)-2,3-dihydrofarnesoate |
72 |
SC-137 |
trans,trans-3,4,13,14-Bismethylene-24-methyldotriacontane |
73 |
SC-138 |
Sarekensane |
73 |
SC-139 |
cis-10,11-Methylenenonacosane |
73 |
SC-140 |
cis,cis-8,9,20,21-bismethylenehentriacontane |
73 |
SC-141 |
(3Z,13Z)-24-Methyldotriaconta-3,13-diene |
73 |
SC-142 |
(3E,13E)-24-Methyldotriaconta-3,13-diene |
73 |
SC-143 |
Socialane |
77 |
SC-144 |
1-Methoxy-28-methyltriacontane |
78 |
SC-145 |
(1R*,6R*,10R*)-6,10-Dimethylbicyclo[4.4.0]decan-3-one |
79 |
SC-146 |
trans-6,10-Dimethylbicyclo[4.4.0]dec-1-en-3-one |
79 |
SC-147 |
cis-6,10-Dimethylbicyclo[4.4.0]dec-1-en-3-one |
79 |
SC-148 |
2-(1-Hydroxy-1-methylpropyl)-3-methoxypyrazin |
79 |
SC-149 |
2-(1-Hydroxy-2-methylpropyl)-3-methoxypyrazin |
79 |
SC-150 |
2,5-Diisopropylpyrazine |
79 |
SC-151 |
2,6-Diisopropylpyrazine |
79 |
SC-152 |
2,3-Diisopropylpyrazine |
79 |
SC-153 |
2-(1-Hydroxy-1-methylethyl)-3-methoxypyrazine |
79 |
SC-154 |
Isogeosmin |
80 |
SC-155 |
2-epi-Isogeosmin |
80 |
SC-156 |
3,11,23-Trimethyltritriacontane |
82 |
SC-157 |
7,27-Dimethylpentatriacontane |
82 |
SC-158 |
Hexadecahydronitidane |
83 |
SC-159 |
3,11,23-Trimethyltritriacont-1-ene dimethyldisulfide adduct |
82 |
SC-160 |
9,29-Dimethylpentatriacont-1-ene dimethyldisulfide adduct |
82 |
SC-161 |
1-Methoxy-2,4,6,8,10,12-hexamethylnonacosane |
82 |
SC-162 |
9,17-Dimethylpentatriacontane |
82 |
SC-163 |
Poduran |
84 |
SC-164 |
Decahydropentaprenylprespatane |
82 |
SC-165 |
9,29-Dimethylpentatriacont-1-ene |
82 |
SC-166 |
3,11,23-Trimethyltritriacont-1-ene |
82 |
SC-167 |
(2R*,4R*,6R*,8R*)-2,4,6,8-Tetramethyloctacosan-1-ol |
82 |
SC-168 |
(2R*,4R*,6R*,8R*)-1-Methoxy-2,4,6,8-tetramethyloctacosane |
82 |
SC-169 |
Nitidane |
83 |
SC-170 |
Lycopane |
82 |
SC-171 |
Lycopaene |
82 |
SC-172 |
Lycopadiene |
82 |
SC-173 |
(2S*,4S*,6S*)-2,4,6-Trimethylhexadecyl (2S*,4S*,6S*)-2,4,6-trimethylhexadecanoate |
82 |
SC-174 |
(2S*,4S*,6S*)-1-Methoxy-2,4,6-trimethylhexadecane |
82 |
SC-175 |
Methyl (2S,4S,6S)-2,4,6-trimethylhexadecanoate |
82 |
SC-176 |
(2S*,4S*,6S*)-2,4,6-Trimethylhexadecy trimethylsilyl ether |
82 |
SC-177 |
Methyl (E)-4,6-dimethyldodec-5-enoate |
85 |
SC-178 |
4-Methoxy-5-(methylthio)benzodioxolane |
86 |
SC-179 |
2-Methyl-3H-imidazo[4,5-b]pyridine |
86 |
SC-180 |
5,6,7-Trimethoxybenzooxathiolane |
86 |
SC-181 |
5,6,7-Trimethoxybenzooxathiolan-4-amine |
86 |
SC-182 |
13-Methyl-N-(2-phenylethyl)tetradecanamide |
87 |
SC-183 |
(E>)-4,6-Dimethyldodec-5-enoic acid |
85 |
AN-1 |
(6Z,9Z)-Henicosa-6,9-diene |
19 |
AN-1 |
(6Z,9Z)-Henicosa-6,9-diene |
19 |
AN-1 |
(6Z,9Z)-Henicosa-6,9-diene |
19 |
AN-1 |
(6Z,9Z)-Henicosa-6,9-diene |
19 |
AN-2 |
(3Z,6Z,9Z)-Henicosa-3,6,9-triene |
19 |
AN-3 |
(3Z,6Z,9Z)-Henicosa-1,3,6,9-tetraene |
19 |
AN-4 |
(3Z,6Z,9Z,11E)-Nonadeca-3,6,9,11-tetraene |
19 |
AN-5 |
(6Z,9Z,11E)-Henicosa-6,9,11-triene |
19 |
AN-6 |
(4E,6Z,9Z)-Nonadeca-4,6,9-triene |
19 |
AN-7 |
(Z)-cis-6,7-Epoxynonadec-9-ene |
19 |
AN-8 |
(Z)-cis-9,10-Epoxynonadec-6-ene |
19 |
AN-9 |
(6Z,9Z)-cis-3,4-Epoxynonadeca-6,9-diene |
19 |
AN-10 |
(3Z,6Z)-cis-6,7-Epoxynonadeca-3,9-diene |
19 |
AN-11 |
(3Z,6Z)-cis-9,10-Epoxynonadeca-3,6-diene |
19 |
AN-12 |
(3Z,6Z,9Z,12Z)-Octadeca-3,6,9,12-tetraene |
23 |
AN-13 |
(3Z,6Z,9Z,12Z)-Eicosa-3,6,9,12-tetraene |
24 |
AN-14 |
5-Methyloctadecan-2-one |
25 |
AN-15 |
5-Methylhexadecan-7-ol |
26 |
AN-16 |
4-Methylhexadecan-6-ol |
26 |
AN-17 |
6-Methylheptadecan-8-ol |
25 |
AN-18 |
5-Methylheptadecan-7-ol |
26 |
AN-19 |
4-Methylheptadecan-6-ol |
26 |
AN-20 |
6-Methyloctadecan-8-ol |
25 |
AN-21 |
5-Methyloctadecan-7-ol |
25 |
AN-22 |
Octadecan-7-ol |
26 |
AN-23 |
Octadecan-9-ol |
26 |
AN-24 |
(4E,6Z,9Z)-henicosa-4,6,9-triene |
35 |
AN-25 |
(2Z,4E,6Z,9Z)-henicosa-2,4,6,9-tetraene |
35 |
AN-26 |
6,10,13-trimethyltetradecan-2-one |
36 |
AN-27 |
6-methyloctadecan-2-one |
37 |
AN-28 |
14-Methyloctadecan-2-one |
37 |
AN-29 |
6,14-dimethyloctadecan-2-one |
37 |
AN-30 |
(E)-Dec-8-en-1-ol |
38 |
AN-31 |
(E)-Deca-7,9-dien-1-ol |
38 |
AN-32 |
(3R*,13R*,1'S*)-1'-Ethyl-2'-methylpropyl 3,13-dimethylpentadecanoate |
39 |
AN-33 |
(10S*,14S*)-10,14-Dimethyloctadec-1-ene |
40 |
AN-34 |
(10E,14E)-Hexadeca-10,14-dienal |
41 |
AN-35 |
(6E,11Z)-Hexadeca-6,11-dienal |
42 |
AN-36 |
(4E,9Z)-Tetradeca-4,9-dienyl acetate |
42 |
AN-37 |
(Z)-Hexadec-13-enyl acetate |
43 |
AN-38 |
(Z)-Hexadec-12-enyl acetate |
43 |
AN-39 |
(Z)-Hexadec-11-enyl acetate |
43 |
AN-40 |
(3Z,13Z)-Octadeca-3,13-dien-1-ol |
44 |
AN-41 |
(3E,13Z)-Octadeca-3,13-dien-1-ol |
45 |
AN-42 |
(3Z,13Z)-Octadeca-3,13-dienyl acetate |
46 |
AN-43 |
(3E,13Z)-Octadeca-3,13-dienyl acetate |
46 |
AN-44 |
(2E,13Z)-Octadeca-2,13-dien-1-ol |
47 |
AN-45 |
(2E,13Z)-Octadeca-2,13-dienyl acetate |
47 |
AN-46 |
(2E,13Z)-Octadeca-2,13-dienal |
47 |
AN-47 |
(6Z,9Z,11E)-cis-3,4-Epoxynonadeca-6,9,11-triene |
48 |
AN-48 |
(3Z,9Z,11E)-cis-6,7-Epoxynonadeca-3,9,11-triene |
48 |
AN-49 |
(3Z,6Z,11E)-cis-9,10-Epoxynonadeca-3,6,11-triene |
48 |
AN-50 |
(3Z,6Z,9Z)-trans-11,12-Epoxynonadeca-3,6,9-triene |
48 |
AN-51 |
(3Z,6Z,11E)-Nonadeca-3,6,11-trien-9-one |
48 |
AN-52 |
(6Z,9Z,11E)-cis-3,4-epoxyhenicosa-6,9,11-triene |
48 |
AN-53 |
(3Z,9Z,11E)-cis-6,7-Epoxyhenicosa-3,9,11-triene |
48 |
AN-54 |
(3Z,6Z,11E)-cis-9,10-Epoxyhenicosa-3,6,11-triene |
48 |
AN-55 |
(3Z,6Z,9Z)-trans-11,12-epoxyhenicosa-3,6,9-triene |
48 |
AN-56 |
(3Z,6Z,11E)-Henicosa-3,6,11-trien-9-one |
48 |
AN-57 |
(9Z,11E)-cis-6,7-Epoxynonadeca-9,11-diene |
48 |
AN-58 |
(6Z,11E)-cis-9,10-Epoxynonadeca-6,11-diene |
48 |
AN-59 |
(6Z,9Z)-trans-11,12-Epoxynonadeca-6,9-diene |
48 |
AN-60 |
(6Z,11E)-Nonadeca-6,11-dien-9-one |
48 |
AN-61 |
(9Z,11E)-cis-6,7-Epoxyhenicosa-9,11-diene |
48 |
AN-62 |
(6Z,11E)-ciss-9,10-Epoxyhenicosa-6,11-diene |
48 |
AN-63 |
Posticlure |
48 |
AN-64 |
(6Z,11E)-Henicosa-6,11-dien-9-one |
48 |
MI-1 |
p-Mentha-1,3-dien-9-ol |
49 |
MI-2 |
Macropophorone |
50 |
MI-3 |
(E)-(6R*,7S*)-6,7-Epoxy-2-nonenal |
51 |
MI-4 |
(E)-2,6,10-Trimethylundeca-5,9-dienal |
51 |
MI-5 |
(E)-6,10-Dimethyl-5,9-undecadien-2-yl acetate |
52 |
ZA-1 |
Phyllisolide |
53 |
FR-1 |
(Z)-Nonacos-10-ene |
54 |
FR-2 |
(8Z,20Z)-8,20-Hentriacontadiene |
54 |
TA-1 |
((1R*,3R*)-2,2-dimethyl-3-(prop-1-en-2-yl)cyclobutyl)methyl acetate |
55 |
TA-2 |
(E)-2-isopropyl-5-methylhexa-2,4-dien-1-yl acetate |
55 |
TA-3 |
Ethyl (E)-7-methyl-4-octenoate |
56 |
TA-4 |
Ethyl (Z)-7-methyl-4-octenoate |
56 |
TA-5 |
Isopropyl (E)-7-methyl-4-octenoate |
56 |
TA-6 |
Isopropyl (Z)-7-methyl-4-octenoate |
56 |
TA-7 |
Ethyl (E)-7-methyl-4-nonenoate |
56 |
TA-8 |
Ethyl (Z)-7-methyl-4-nonenoate |
56 |
TA-9 |
Isopropyl (E)-7-methyl-4-nonenoate |
56 |
TA-10 |
Isopropyl (Z)-7-methyl-4-nonenoate |
56 |
GR-1 |
N-4-methylvaleroyl-O-isobutyroyl-serine methyl ester |
57 |
GR-2 |
N-4-methylvaleroyl-O-hexanoyl-serine methyl ester |
57 |
GR-3 |
N-4-methylvaleroyl-O-butyroyl-serine methyl ester |
57 |
GR-4 |
Limoniic Acid |
88 |
GR-5 |
N-4-methylvaleroyl-O-butyroyl-serine methyl ester |
88 |
JO-1 |
Gosodesmine |
58 |
JO-2 |
(E)-N-(2-(4-Hydroxyphenyl)ethyl)-2-methylpent-2-enamide |
59 |
JO-3 |
N-(2-(4-Hydroxyphenyl)ethyl)-2-methylpentanamide |
59 |
JO-4 |
N-(4-hydroxyphenethyl)-2-oxobutanamide |
59 |
JO-5 |
2-Hydroxy-N-(4-hydroxyphenethyl)butanamide |
59 |
JO-6 |
cis-3-Heptyl-5-methylhexahydro-1H-pyrrolizine |
66 |
JO-7 |
cis-3-Butyl-5-hexylhexahydro-1H-pyrrolizine |
66 |
JO-8 |
N-(4-Hydroxyphenethyl)-5-methyl-2-oxohexanamide |
59 |
JO-9 |
trans-9-(5-Hexylpyrrolidin-2-yl)nonan-2-one |
67 |
JO-10 |
Deoxybuzonamine |
68 |
JO-11 |
(3S*,5R*,7R*)-3,5,7-Trimethyldecane-2,8-dione |
68 |
JO-12 |
cis-3-Hexyl-5-methyloctahydroindolizine |
69 |
JO-13 |
4-Methyl-6-propyloctahydro-2H-quinolizine |
74 |
PO-1 |
(2E,4Z,7Z)-2,4,7-Decatrienal |
75 |
GO-1 |
p-Mentha-1_8-dien-4-ol |
|
RU-1 |
Albireticulene |
76 |
RU-2 |
Gersemiene A |
76 |
RU-3 |
Gersemiene B |
76 |
RU-4 |
Prenylgermacrene A |
76 |
RU-5 |
Benditerpe-2,6,15-triene |
76 |
RU-6 |
iso-Albireticulene |
76 |
RU-7 |
Albiretol |
76 |
RU-8 |
Albireticulone A |
76 |
RU-9 |
Albiretriene |
76 |
MO-1 |
4,6-Dimethyltetrahydro-2H-pyran-2-one |
|
MO-2 |
4,6-Dimethyltetrahydro-2H-pyran-2-one |
|
DI-1 |
(1R,3E,7E,11S*,12S*)-18-hydroxydolabella-3,7-diene |
60 |
DI-2 |
Vittatalactone |
89 |
DI-3 |
Guaia-1(10),11-diene |
90 |
DI-4 |
(6Z,9Z)-cis-3,4-Epoxy-1,6,9-heneicosatriene |
91 |
DI-5 |
(Z)-Filamentolide |
92 |
DI-6 |
2-Hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine |
93 |
DI-7 |
Brassicadiene |
94 |
DI-8 |
2-(Methylthio)benzene-1,4-diol |
95 |
DI-9 |
4-Hydroxy-3-(methylthio)benzaldehyde |
95 |
DI-10 |
4-(Hydroxymethyl)-2-(methylthio)phenol |
95 |
DI-11 |
Tetrahydrobrassicadiene |
94 |
DI-12 |
(3Z,9Z)-6,7-Epoxyheneicosa-1,3,9-triene |
96 |
DI-13 |
(3,6-Diethyl-5-methylpyrazin-2-yl)methyl acetate |
97 |
DI-14 |
(3,6-Diethyl-5-methylpyrazin-2-yl)methanol |
97 |
DI-15 |
2-Hydroxymethyl-3,5,6-trimethylpyrazine |
97 |
DI-16 |
3,5,6-Trimethylpyrazin-2-yl)methyl 3-methylbutanoate |
97 |
DI-17 |
(3,5,6-Trimethylpyrazin-2-yl)methyl 2-methylbutanoate |
97 |
DI-18 |
(3,6-Dimethylpyrazin-2-yl)methyl 3-methylbutanoate |
97 |
DI-19 |
Drakolide |
97 |
DI-20 |
(E)-Filamentolide |
98 |
DI-21 |
5,9,17-Trimethylhenicosane |
92 |
DI-22 |
5,9,12,16-Tetramethyleicosane |
99 |
DI-23 |
5,9-Dimethyldocosane |
99 |
DI-24 |
6,7-Dihydromicromonocyclol |
100 |
DI-25 |
18-Hydroxydolabella-3-ene |
100 |
DI-26 |
Pinaruptene I |
100 |
DI-27 |
Pinaruptene II |
100 |
DI-28 |
Pinaruptene III |
100 |
DI-29 |
Dolastaruptene I |
100 |
DI-30 |
Dolastaruptene II |
100 |
DI-31 |
Tsukubaruptene |
100 |
DI-32 |
Catenaruptene I |
100 |
DI-33 |
Catenaruptene II |
100 |
DI-34 |
Phomoruptene I |
100 |
DI-35 |
Phomoruptene II |
100 |
DI-36 |
Albataruptene I |
100 |
DI-37 |
Albataruptene II |
100 |
DI-38 |
Albataruptene III |
100 |
DI-39 |
Bonnaruptene I |
100 |
DI-40 |
Bonnaruptene II |
100 |
DI-41 |
Bonnaruptene III |
100 |
DI-42 |
Bonnaruptenol |
100 |
DI-43 |
Ophioruptene I |
100 |
DI-44 |
Ophioruptene II |
100 |
DI-45 |
Ophioruptene III |
100 |
DI-46 |
Ophioruptene IV |
100 |
DI-47 |
Aspergilruptene I |
100 |
DI-48 |
Aspergilruptene II |
100 |
DI-49 |
Sodorifen |
101 |
DI-50 |
Presodorifen |
101 |
DI-51 |
(1R*,3aR*,4S*,6aR*)-1,3a,4,5,6,6a-Hexamethyl-1-vinyl-1,2,3,3a,4,6a-hexahydropentalene |
101 |
DI-52 |
Methyl 2-(tetrahydrofuran-2-yl)acetate |
102 |
DI-53 |
Ethyl 2-(tetrahydrofuran-2-yl)acetate |
102 |
DI-54 |
Polytrichastrene A |
103 |
DI-55 |
Wanju-2,5-diene |
103 |
DI-56 |
Catenul-14-en-6-ol |
104 |
DI-57 |
Isocatenula-2,14-diene |
104 |
DI-58 |
Isocatenula-2(6),14-diene |
104 |
DI-59 |
Catenul-14-en-6-one |
104 |
DI-60 |
Catenul-14-en-6-yl acetate |
104 |
DI-61 |
(1S*,4S*,7S*,8S*,9S*,10R*)-Spata-13,17-diene |
105 |
DI-62 |
(1S*,2R*,5S*,6S*,7R*,8R*)-Prenylkelsoene |
105 |
DI-63 |
Bourbon-11-ene |
105 |
DI-64 |
Prenylspata-13,17-diene |
105 |
DI-65 |
Kelsoene |
105 |
DI-66 |
Geranylkelsoene |
105 |
DI-67 |
Isopentylkelsoene |
105 |
DI-68 |
(4R*,6S*,7E,9E)-Graphisurone |
106 |
DI-69 |
(4Z,7Z)-Deca-4,7-dienyl acetate |
107 |
DI-70 |
(6Z,9Z)-Tricosa-1,6,9-triene |
108 |
DI-71 |
Spat-13-ene |
105 |
DI-72 |
(3Z,6Z,9Z)-Tricosa-3,6,9-triene |
108 |
DI-73 |
(6Z,9Z)-Tricosa-6,9-diene |
108 |
DI-74 |
2-(4-Methylpentyl)octahydro-2H-quinolizine |
109 |
DI-75 |
7-(4-Methylpentyl)octahydroindolizine |
109 |
DI-76 |
Homogosodesmine |
109 |
DI-77 |
2-(4-Methylpent-3-en-1-yl)-1,6,7,8,9,9a-hexahydro-4H-quinolizin-4-one |
109 |
DI-78 |
Hydrogosodesmine |
109 |
DI-79 |
Homo-hydrogosodesmine |
109 |
DI-80 |
2-Methyl-5-(octahydro-2H-quinolizin-2-yl)pentan-2-ol |
109 |
DI-81 |
2-Methyl-5-(octahydroindolizin-7-yl)pentan-2-ol |
109 |
DI-82 |
3-Acetoxynitropolyzonamine |
110 |
DI-83 |
Polyzonamine |
110 |
DI-84 |
Nitropolyzonamine |
110 |
DI-85 |
(4S*,5S*)-4-Ethyl-5-methyl-2-(1-methylpropyl)-1,3-dioxolane |
111 |
DI-86 |
(2R>/S,4S*,5S*)-4-Ethyl-2-isopropyl-5-methyl-1,3-dioxolane |
111 |
DI-87 |
(2R>/S,4S*,5S*)-2,4-Diethyl-2,5 dimethyl-1,3-dioxolane |
111 |
DI-88 |
(2R>/S,4S*,5S*)-4-Ethyl-5-methyl-2-(2-methylpropyl)-1,3-dioxolane |
111 |
DI-89 |
α,α-Acariolide |
112 |
DI-90 |
α,β-Acariolide |
112 |
DI-91 |
N-(2-Phenylethyl)pentadecanamide |
87 |
DI-92 |
N-(4-Hydroxyphenylethyl)-2-phenylacetamide |
87 |
DI-93 |
N-(4-Hydroxyphenethyl)-3-(methylthio)propanamide |
87 |
DI-94 |
Tetraprenyl-beta-curcumene |
87 |
DI-95 |
Tetraprenyl-ar-curcumene |
87 |
DI-96 |
Triprenyl-ar-curcumene |
87 |
DI-97 |
Triprenyl-β-curcumene |
87 |
DI-98 |
Decahydrotetraprenyl-ar-curcumene |
87 |
DI-99 |
2-Methyl-6-pentyl-3,4-dihydro-2H-pyrane |
113 |
DI-100 |
Spiroviolene |
114 |
DI-101 |
Talaropentaene |
115 |
DI-102 |
Macrophomene |
115 |
DI-103 |
Colleterpenol |
115 |
DI-104 |
(1Z)-8,9-Dimethyl-1-(nitromethylidene)-2-azaspiro[4.4]non-8-en-7-one |
110 |
DI-105 |
2,3-Dimethyl-7-nitro-2,3,5,6,7,7a-hexahydrospiro[cyclopentane-1,1-pyrrolizin]-2-ene |
110 |
BU-1 |
4,6-Dimethyltetrahydro-2H-pyran-2-one |
Synthetic |
BU-2 |
4,6-Dimethyltetrahydro-2H-pyran-2-one (Diastereomer) |
Synthetic |
DO-1 |
Gambanol |
116 |
KA-1 |
Invictolide |
117 |
Li-1 |
3-Methyl-1-(methylthio)but-2-ene |
118 |
Li-2 |
Murgantiol |
119 |
Li-3 |
Epoxyzingiberene |
119 |
Li-4 |
3-Isopropyl-2,5-dimethylpyrazine |
120 |
Li-5 |
5-Isopropyl-2,3-dimethylpyrazine |
120 |
Li-6 |
2-Isopropyl-3,5-dimethylpyrazine |
120 |
Li-7 |
(E)-Filamentol |
92 |
Li-8 |
(Z)-Filamentol |
92 |
Li-9 |
(E)-Filamental |
92 |
Li-10 |
Filamentone |
92 |
Li-11 |
(Z)-Filamental |
92 |
Li-12 |
2,4,8,13-Tetramethyltetradecan-1-ol |
121 |
DS-1 |
4,5-diepi-Geosmin |
80 |
DS-2 |
5,10-diepi-Geosmin |
80 |
DS-3 |
5-epi-Geosmin |
80 |
DS-4 |
Geosmin |
80 |
KI-1 |
Lavandulyl senecioate |
122 |
KI-2 |
2-Isopropylidene-5-methyl-4-hexen-1-yl butyrate |
123 |
KI-3 |
(E)-2-Isopropyl-5-methylhexa-3,5-dienyl acetate |
124 |
KI-4 |
2,6-Dimethyl-1,5-heptadien-3-yl acetate |
125 |
|
|
1 |
M. Gerbaulet, A. Möllerke, K. Weiss, S. Chinta, J. M. Schneider, S. Schulz,
Identification of cuticular and web lipids of the spider Argiope bruennichi, J. Chem. Ecol., online (2022).
doi: 10.1007/s10886-021-01338-y
|
2 |
P. Stamm, F. Etl, A. C. D. Maia, S. Dötterl, S. Schulz,
Synthesis, Absolute Configuration and Biological Activity of Floral Scent Compounds from Night-Blooming Araceae, J. Org. Chem. 86, 5245 (2021).
doi: 10.1021/acs.joc.1c00145
|
3 |
P. Stamm, F. Mann, M. McClure, M. Elias, S. Schulz,
Chemistry of the Androconial Secretion of the Ithomiine Butterfly Oleria onega,
J. Chem. Ecol. 45, 768-778 (2019). doi: 10.1016/S0040-4020(01)01149-8
|
4 |
R. Wegener, S. Schulz,
Identification and Synthesis of Homomonoterpenoids Emitted from Elm Leaves after Elicitation by Beetle Eggs, Tetrahedron 58, 315-319 (2002).
doi: 10.1007/s10886-019-01100-5
|
5 |
S. Schulz, W. Francke, M. Boppre, T. Eisner, J. Meinwald,
Insect pheromone biosynthesis: Stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera, Arctiidae), Proc. Natl. Acad. Sci. USA 90, 6834-6838 (1993)
doi: 10.1073/pnas.90.14.6834
|
6 |
S. Ehlers, D. Szczerbowski, T. Harig, M. Stell, S. Hötling, K. Darragh, C. D. Jiggins, S. Schulz,
Identification and composition of clasper scent gland components of the butterfly Heliconius erato and its relation to mimicry, ChemBioChem 22, 3300-3313 (2021).
doi: 10.1002/cbic.202100372
|
7 |
S. B. Krasnoff, L. B. Bjostad, W. L. Roelofs,
Quantitative and qualitative variation in male pheromones ofPhragmatobia fuliginosa and Pyrrharctia isabella (Lepidoptera: Arctiidae), J. Am. Chem. Soc. 88, 1305-1310 (1966).
doi: 10.1007/BF01020162
|
8 |
J. Meinwald, Y. C. Meinwald,
Structure and Synthesis of the Major Components in the Hairpencil Secretion of a Male Butterfly, Lycorea ceres ceres (Cramer), J. Am. Chem. Soc. 88, 1305-1310 (1966).
doi: 10.1021/ja00958a039
|
9 |
V. Witte, S. Foitzik, R. Hashim, U. Maschwitz, S. Schulz,
Fine Tuning of Social Integration in two Myrmecophiles of the Ponerine Army Ant Leptogenys distinguenda, J. Chem. Ecol.. 35, 355-367 (2009).
doi: 10.1007/s10886-009-9606-8
|
10 |
T. W. Bell, J. Meinwald,
Pheromones of two arctiid moths (Creatonotos transiens and C. gangis), J. Chem. Ecol. 12, 385-709 (1986).
doi: 10.1007/BF01020563
|
11 |
S. C. Jain, D. E. Dussourd, W. E. Conner, T. Eisner, A. Guerrero, J. Meinwald,
Polyene pheromone components from an arctiid moth (Utetheisa ornatrix): characterization and synthesis, J. Org. Chem. 48, 2266-2270 (1983).
doi: 10.1021/jo00161a024
|
12 |
V.Sinnwell, S.Schulza, W.Francke, R.Kittmann, D.Schneider,
Identification of pheromones from the male swift moth Hepialus Hecta L., Tetrahedron Letters 26, 1707-1710 (1985).
doi: 10.1016/S0040-4039(00)98317-5
|
13 |
W. Francke, W. Mackenroth, W. Schroder, S. Schulz, J. Tengoe,E. Engels, W. Engels, R. Kittmann, D. Schneider,
Identification of Cyclic Enolethers from Insects: Alkyldihydropyranes from Bees and AIkyldihydro-4H-pyran-4-ones from a Male Moth*,
Polyene pheromone components from an arctiid moth (Utetheisa ornatrix): characterization and synthesis, Zeitschrift für Naturforschung C 40, 145-147 (1985).
doi: 10.1021/jo00161a024
|
14 |
S. Schulz, W. Francke, J. Edgar und D. Schneider,
Volatile compounds from androconial organs of danaine and ithomiine butterflies, Zeitschrift für Naturforschung C 43, 99-104 (1988).
doi: 10.1515/znc-1988-1-219
|
15 |
K. Krückert, B. Flachsbarth, S. Schulz, U. Hentschel, P. J. Weldon,
Ethyl-Branched Aldehydes, Ketones, and Diketones from Caimans (Caiman and Paleosuchus; Crocodylia, Reptilia), J. Nat. Prod. 69, 863-870 (2006).
doi: 10.1021/np0600797
|
16 |
S.Schulz, R.Nishida,
The pheromone system of the male danaine butterfly, Idea leuconoe, Bioorganic & Medicinal Chemistry 4, 341-349 (1996).
doi: 10.1016/0968-0896(96)00011-9
|
17 |
S. Schulz, W. Francke, M. Boppré,
Carboxylic Acids from Hairpencils of Male Amauris Butterflies (Lep.: Danainae), Biol. Chem. 369, 633-638 (1988).
doi: 10.1515/bchm3.1988.369.2.633
|
18 |
T. Harig, C. Schlawis, L. Ziesche, M. Pohlner, B. Engelen, S. Schulz,
Nitrogen-Containing Volatiles from Marine Salinispora pacifica and Roseobacter-Group Bacteria, J. Nat. Prod. 80, 3289-3295 (2017).
doi: 10.1021/acs.jnatprod.7b00789
|
19 |
M. Yamamoto, R. Yamakawa, T. Oga, Y. Takei, M. Kinjo, T. Ando,
Synthesis and Chemical Characterization of Hydrocarbons with a 6,9,11-, 3,6,9,11-, or 1,3,6,9-Polyene System, Pheromone Candidates in Lepidoptera, J Chem Ecol 34, 1057-1064 (2008).
doi: 10.1007/s10886-008-9461-z
|
20 |
Y. Muraki, R. Yamakawa, M. Yamamoto, H. Naka, A. Honma, J. Mappes, K. Suisto, T. Ando,
GC/FT-IR Analysis of Novel 4,6,9-Triene and 2,4,6,9-Tetraene Occurring in a Female Pheromone Gland of Arctia plantaginis (Erebidae: Arctiinae), Am. J. Anal. Chem. 8, 645-656 (2017).
doi: 10.4236/ajac.2017.810047
|
21 |
T. Ando, H. Kishi, N. Akashio, X.-R. Qin, N. Saito, H. Abe, S. Hashimoto,
Sex attractants of geometrid and noctuid moths: Chemical characterization and field test of monoepoxides of 6,9-dienes and related compounds, J Chem Ecol 21, 299--311 (1995).
doi: 10.1007/BF02036719
|
22 |
T. Ando, H. Ohsawa, T. Ueno, H. Kishi, Y. Okamura, S. Hashimoto,
Hydrocarbons with a homoconjugated polyene system and their monoepoxy derivatives: Sex attractants of geometrid and noctuid moths distributed in Japan, J Chem Ecol 19, 787-798 (1993).
doi: 10.1007/BF00985009
|
23 |
R. Yamakawa, N. D. Do, M. Kinjo, Y. Terashima, T. Ando,
Components of the Sex Pheromones Produced by Emerald Moths: Identification, Synthesis, and Field Evaluation, J Chem Ecol 37, 105-113 (2011).
doi: 10.1007/s10886-010-9895-y
|
24 |
R. Yamakawa, N. D. Do, M. Kinjo, Y. Terashima, M. Kinjo T. Ando,
(6Z,9Z,12Z)-6,9,12-Octadecatriene and (3Z,6Z,9Z,12Z)-3,6,9,12-icosatetraene, the novel sex pheromones produced by emerald moths, Tetrahedron Letters 50, 4738-4740 (2009).
doi: 10.1016/j.tetlet.2009.06.027
|
25 |
Y. Adachi, N. D. Do, M. Kinjo, S. Makisako, R. Yamakawa, K. Mori, T. Ando,
Positions and Stereochemistry of Methyl Branches in the Novel Sex Pheromone Components Produced by a Lichen Moth, Lyclene dharma dharma, J Chem Ecol 36, 814-823 (2010).
doi: 10.1007/s10886-010-9813-3
|
26 |
Y. Muraki, T. Taguri, R. Yamakawa, T. Ando,
Synthesis and Field Evaluation of Stereoisomers and Analogues of 5-Methylheptadecan-7-ol, an Unusual Sex Pheromone Component of the Lichen Moth, Miltochrista calamina, J Chem Ecol 40, 250-258 (2014).
doi: 10.1007/s10886-014-0405-5
|
27 |
S. Schulz,
Absolute Configuration and Synthesis of 2-Hydroxy-2-(1-hydroxyethyl)-3-methyl-γ-butyrolactone, a Presumed Pheromone of Ithomiine Butterflies, Liebigs Ann. Chem., 829-834 (1992).
doi: 10.1002/jlac.1992199201137
|
28 |
S. Schulz, G. Beccaloni, K. S. Brown, M. Boppré, A. V. L. Freitas, P. Ockenfels, J. R. Trigo,
Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae: Ithomiinae), Biochem. Syst. Ecol. 32, 699-713 (2004).
doi: 10.1016/j.bse.2003.12.004
|
29 |
S. Schulz,
Composition of the Silk Lipids of the Spider Nephila clavipes, Lipids 36, 637-647 (2001).
doi: 10.1007/s11745-001-0768-7
|
30 |
D. Szczerbowski, S. Ehlers, K. Darragh, C. Jiggins, S. Schulz,
Head and Tail Oxidized Terpenoid Esters from Androconia of Heliconius erato Butterflies, J. Nat. Prod. 85, 699-713 (2004).
doi: 10.1021/acs.jnatprod.2c00300
|
31 |
L. Ziesche, L. Wolter, H. Wang, T. Brinkhoff, M. Pohlner, B. Engelen, I. Wagner-Döbler, S. Schulz,
An Unprecedented Medium-Chain Diunsaturated N-acylhomoserine Lactone from Marine Roseobacter Group Bacteria, Mar. Drugs 17, 20 (2019).
doi: 10.3390/md17010020
|
32 |
D. Koteska,S. S. Garcia, I. Wagner-Döbler, S. Schulz,
Identification of Volatiles of the Dinoflagellate Prorocentrum cordatum, Mar. Drugs 20, 371 (2022).
doi: 10.3390/md20060371
|
33 |
P. Biwer, M. Neumann-Schaal, P. Henke, D. Jahn, S. Schulz ,
Thiol Metabolism and Volatile Metabolome of Clostridioides difficile, Front. Microbiol. 13, 864587 (2022).
doi: 10.3389/fmicb.2022.864587
|
34 |
J. Kuhn, S. Schulz,
Cinnamomeoventrolide - Double Bond Regioisomerism in Frog Semiochemicals, J Chem Eco (2022).
doi: 10.1007/s10886-022-01370-6
|
35 |
Y. Muraki, R. Yamakawa, M. Yamamoto, H. Naka, A. Honma, J. Mappes, K. Suisto, T. Ando,
GC/FT-IR Analysis of Novel 4,6,9-Triene and 2,4,6,9-Tetraene Occurring in a Female Pheromone Gland of Arctia plantaginis (Erebidae: Arctiinae), Am. J. Anal. Chem. 8, 645-656 (2017).
doi: 10.4236/ajac.2017.810047
|
36 |
Y. Muraki,T. Taguri,M. Yamamoto,P. H. G. Zarbin,T. Ando,
Synthesis of All Four Stereoisomers of 6,10,13-Trimethyltetradecan-2-one, a Sex Pheromone Component Produced by Males of the Stink Bug Pallantia macunaima, Eur. J. Org. Chem. 11, 2209-2215 (2013).
doi: 10.1002/ejoc.201201688
|
37 |
M. Yamamoto, T. Kamata, N. D. Do, Y. Adachi, M. Kinjo, T. Ando,
A Novel Lepidopteran Sex Pheromone Produced by Females of a Lithosiinae Species, Lyclene dharma dharma, in the Family of Arctiidae, Biosci. Biotechnol. Biochem 71, 2860-2863 (2007).
doi: 10.1271/bbb.70551
|
38 |
H. Shibasaki, M. Yamamoto, Q. Yan, H. Naka, T. Suzuki, T. Ando,
Identification of the Sex Pheromone Secreted by a Nettle Moth, Monema flavescens, Using Gas Chromatography/Fourier Transform Infrared Spectroscopy, J Chem Eco 39, 350-357 (2013).
doi: 10.1007/s10886-013-0253-8
|
39 |
T. Taguri, M. Yamamoto, T. Fujii, Y. Muraki, T. Ando,
Synthesis of Four Stereoisomers of (S)-2-Methylpent-3-yl 3,13-Dimethylpentadecanoate, a Sex Pheromone of the Bagworm Moth Clania variegate, Using Stereospecific Inversion of Secondary Sulfonates as a Key Step, Eur. J. Org. Chem. 30, 6924-6933 (2013).
doi: 10.1002/ejoc.201300874
|
40 |
T. Taguri, K. Yaginuma, M. Yamamoto, T. Fujii,T. Ando,
Enantiospecific synthesis and filed evaluation of four stereoisomers of 10,14-dimethyloctadec-1-ene, a sex pheromone component secreted by female moths of the apple leafminer, Biosci. Biotechnol. Biochem. 78, 761-765 (2014).
doi: 10.1080/09168451.2014.905187
|
41 |
Q. Yan, L. V. Vang, C. Nguyen Q. Khanh, H. Naka, T. Ando,
Reexamination of the Female Sex Pheromone of the Sweet Potato Vine Borer Moth: Identification and Field Evaluation of a Tricosatriene, J Chem Eco 40, 590-598 (2014).
doi: 10.1007/s10886-014-0446-9
|
42 |
Q. Yan, A. Kanegae, T. Miyachi, H. Naka, H. Tatsut, T. Ando ,
Female Sex Pheromones of Two Japanese Saturniid Species, Rhodinia fugax and Loepa sakaeiy: Identification, Synthesis, and Field Evaluation, J Chem Eco 41, 1-8 (2015).
doi: 10.1007/s10886-014-0538-6
|
43 |
Q. Yan, K. Kuriyama, K. Nishikawa, S. Tominaga, H. Tatsuta, T. Ando, H. Naka,
(Z)-13-Hexadecenyl Acetate: a Novel Moth Sex Pheromone Component from Herpetogramma submarginale (Lepidoptera: Crambidae), J Chem Eco 41, 441-445 (2015).
doi: 10.1007/s10886-015-0576-8
|
44 |
H. Naka, T. Nakazawa, M. Sugie, M. Yamamoto, Y. Horie, R. Wakasugi, Y. Arita, H. Sugie, K. Tsuchida, T. Ando,
Synthesis and Characterization of 3,13- and 2,13-Octadecadienyl Compounds for Identification of the Sex Pheromone Secreted by a Clearwing Moth, Nokona pernix, Biosci. Biotechnol. Biochem. 70, 508-516 (2006).
doi: 10.1271/bbb.70.508
|
45 |
H. Naka, S. Kubota, F. Kuchiki, H. Shibasaki, M. Yamamoto, Y. Soejima, Y. Arita, T. Ando,
Identification and field attraction of the female sex pheromone of a kiwifruit pest, Nokona feralis (Lepidoptera: Sesiidae), Biosci. Biotechnol. Biochem. 82, 1468-1472 (2018).
doi: 10.1080/09168451.2018.1484274
|
46 |
H. Naka, T. Nakazawa, M. Sugie, M. Yamamoto, Y, Horie, R. Wakasugi, Y. Arita, H. Sugie, K. Tsuhida, T. Ando,
Synthesis and Characterization of 3,13- and 2,13-Octadecadienyl Compounds for Identification of the Sex Pheromone Secreted by a Clearwing Moth, Nokona pernix , Biosci. Biotechnol. Biochem. 70, 508-516 (2006).
doi: 10.1271/bbb.70.508
|
47 |
H. Naka, S. Inomata, K. Matsuoka, M. Yamamoto, H. Sugie, K. Tsuchida, Y. Arita, T. Ando,
Sex Pheromones of Two Melittini Species, Macroscelesia Japona and M. Longipes: Identification and Field Attraction, J Chem Eco 33, 591-601 (2007).
doi: 10.1007/s10886-006-9242-5
|
48 |
M. Yamamoto, R. Maruyama, Y. Murakami, Y. Sakamoto, R. Yamakawa, T. Ando,
Characterization of posticlure and the structure-related sex pheromone candidates prepared by epoxidation of (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes, Anal. Bioanal. Chem. 405, 7405-7414 (2013).
doi: 10.1007/s00216-013-7144-2
|
49 |
M. A. Molander, B. Eriksson, K. Arriola, A. B. Richards, L. M. Hanks, M. C. Larsson, J. G. Millar,
p-Mentha-1,3-dien-9-ol: A novel aggregation-sex pheromone for monitoring longhorn beetles (Cerambycidae) in Eurasia and North America, J Appl Entomol. 146, 1098-1108 (2022).
doi: 10.1111/jen.13059
|
50 |
W. D. Silva, Y. Zou, L. M. Hanks, J. Maurício S. Bento, J. G. Millar,
Pheromone Component for the South American Cerambycid Beetle Macropophora accentifer, J Chem Eco (2022).
doi: 10.1007/s10886-022-01362-6
|
51 |
T. Xu, H. Yasui, S. A. Teale, N. Fujiwara-Tsujii, J. D. Wickham, M. Fukaya, L. Hansen, S. Kiriyama, D. Hao, A. Nakano, L. Zhang, T. Watanabe, M. Tokoro, J. G. Millar,
Identification of a male-produced sex-aggregation pheromone for a highly invasive cerambycid beetle, Aromia bungii, Sci. Rep. 7, 7330 (2017).
doi: 10.1038/s41598-017-07520-1
|
52 |
L. R. Meier, Y. Zou, J. G. Millar, J. A. Mongold-Diers, L. M. Hanks ,
Synergism between Enantiomers Creates Species-Specific Pheromone Blends and Minimizes Cross-Attraction for Two Species of Cerambycid Beetles, J Chem Eco 42, 1181-1192 (2016).
doi: 10.1007/s10886-016-0782-z
|
53 |
D. J. Melo, E. O. Borges, D. Szczerbowski, D. M. Vidal, S. Schulz, P. H. G. Zarbin,
Identification and Synthesis of a Macrolide as an Anti-aphrodisiac Pheromone from Males of Heliconius erato phyllis, Org. Lett. 24, 3772-3775 (2022).
doi: 10.1021/acs.orglett.2c01160
|
54 |
J. Mant, C. Brändli, N. J. Vereecken, C. M. Schulz, W. Francke, F. P. Schiestl,
Cuticular Hydrocarbons as Sex Pheromone of the Bee Colletes cunicularius and the Key to its Mimicry by the Sexually Deceptive Orchid, Ophrys exaltata, J Chem Eco 31, 1765-1787 (2005).
doi: 10.1007/s10886-005-5926-5
|
55 |
J. Tabata,
Genetic Basis Underlying Structural Shift of Monoterpenoid Pheromones in Mealybugs, J Chem Eco 48, 546-553 (2022).
doi: 10.1007/s10886-021-01339-x
|
56 |
J. Tabata, H. Yasui,
Sex Pheromone of the Azalea Mealybug With a Non-Terpene Structure, J Chem Eco 48, 609-617 (2022).
doi: 10.1007/s10886-022-01376-0
|
57 |
A. Fischer, R. Gries, S. K. Alamsetti, E. Hung, A. C. Roman Torres, Y. Fernando, S. Meraj, W. Ren, R. Britton, G. Gries,
Origin, structure and functional transition of sex pheromone components in a false widow spider, Commun Biol 5, 1156 (2022).
doi: 10.1038/s42003-022-04072-7
|
58 |
M. F. Hassler, D. P. Harrison, T. H. Jones, C. H. Richart, R. A. Saporito,
Gosodesmine, a 7-Substituted Hexahydroindolizine from the Millipede Gosodesmus claremontus, J. Nat. Prod. 9, 2764-2768 (2020).
doi: 10.1021/acs.jnatprod.0c00722
|
59 |
A. R. Luo, M. F. Hassler, T. H. Jones, R. K. Vander Meer, R. M. M. Adams,
The Evolution of Tyramides in Male Fungus-Growing Ants (Formicidae: Myrmicinae: Attini: Attina), J Chem Eco 48, 782-790 (2022).
doi: 10.1007/s10886-022-01382-2
|
60 |
J. S. Dickschat, J. Rinkel, P. Rabe, A. B. Kashkooli, H. J. Bouwmeester,
18-Hydroxydolabella-3,7-diene synthase - a diterpene synthase from Chitinophaga pinensis, Beilstein J. Org. Chem. 13, 1770-1780 (2017).
doi: 10.3762/bjoc.13.171
|
61 |
S. Schulz, S. Toft,
Branched long chain alkyl methyl ethers: a new class of lipids from spider silk, Tetrahedron 49, 6805-6820 (2001).
doi: 10.1016/S0040-4020(01)80424-5
|
62 |
D. Koteska, P. Marter, S. Huang, S. Pradella, J. Petersen, S. Schulz,
Volatiles of the Apicomplexan Alga Chromera velia and Associated Bacteria, ChemBioChem 24, e202200530 (2022).
doi: 10.1002/cbic.202200530
|
63 |
A. Ladwig, M. Kroll, S. Schulz,
Identification and determination of the absolute configuration of amorph-4-en-10β-ol, a cadinol-type sesquiterpene from the scent glands of the African reed frog Hyperolius cinnamomeoventris, Beilstein J. Org. Chem. 19, 167-175 (2023).
doi: 10.3762/bjoc.19.16
|
64 |
K. Stritzke, S. Schulz, M. Boppré,
Niaviolides, New Macrocyclic Sesquiterpenes Secreted by Males of the African Butterfly Amauris niavius, EurJOC 7, 1337-1342 (2003).
doi: 10.1002/ejoc.200390189
|
65 |
S. Schulz, J. Gross, M. Hilker,
Origin of the defensive secretion of the leaf beetle Chrysomela lapponica, Tetrahedron 53, 9203-9212 (1997).
doi: 10.1016/S0040-4020(97)00618-2
|
66 |
T. H. Jones, M. S. Blum, H. M. Fales, C. R. Thompson,
(5Z,8E)-3-Heptyl-5-methylpyrrolizidine from a thief ant, J. Org. Chem. 45, 4778-4780 (1980).
doi: 10.1021/jo01311a048
|
67 |
R. M. M. Adams, T. H. Jones, J. T. Longino, R. G. Weatherford, U. G. Mueller,
Alkaloid Venom Weaponry of Three Megalomyrmex Thief Ants and the Behavioral Response of Cyphomyrmex costatus Host Ants, J Chem Eco 41, 373-385 (2015).
doi: 10.1007/s10886-015-0565-y
|
68 |
T. H. Jones, D. P. Harrison, C. Menegatti, E. Mevers, K. Knott, P. Marek, D. A. Hennen, M. T. Kasson, A. M. Macias, B. Lovett, R. A. Saporito,
Deoxybuzonamine Isomers from the Millipede Brachycybe lecontii (Platydesmida: Andrognathidae), J. Nat. Prod. 85, 1134-1140 (2022).
doi: 10.1021/acs.jnatprod.2c00077
|
69 |
T. H. Jones, D. M. Guthrie, C. T. Hogan, D. J. Robinson, R. Mesibov, W. A. Shear, T. F. Spande, R. A. Saporito,
The Chemistry of Some Dalodesmidean Millipedes from Tasmania (Diplopoda, Polydesmida), J. Nat. Prod. 81, 171-177 (2018).
doi: 10.1021/acs.jnatprod.7b00806
|
70 |
J. S. T. Gorman, T. H. Jones, T. F. Spande, R. R. Snelling, J. A. Torres, H. M. Garraffo,
3-Hexyl-5-Methylindolizidine Isomers from Thief Ants, Solenopsis (Diplorhoptrum) Species, J Chem Eco 24, 933-943 (1998).
doi: 10.1023/A:1022381719471
|
71 |
J. Holste, C. Mügge, C. Distler, S. Schulz,
The uropygial gland of the Great Cormorant (Phalacrocorax carbo): II. Biochemical analysis of the uropygial secretion, J. Ornitho., 164:605-619 (2023).
doi: 10.1007/s10336-023-02073-9
|
72 |
S. Ehlers, R. Blow, D. Szczerbowski, C. Jiggins, St. Schulz,
Variation of Clasper Scent Gland Composition of Heliconius Butterflies from a Biodiversity Hotspot, ChemBioChem. 24, e2023005 (2023).
doi: 10.1002/cbic.202300537
|
73 |
A. Möllerke, J. Bello, H. P. Leinaas, S. Schulz,
Cyclopropane Hydrocarbons from the Springtail Vertagopus sarekensis-A New Class of Cuticular Lipids from Arthropods, Online (2023).
doi: 10.1021/acs.jnatprod.3c00789
|
74 |
T. H. Jones, J. S. T. Gorman, R. R. Snelling, J. H. C. Delabie, M. S. Blum, H. M. Garraffo, P. Jain, J. W. Daly, T. F. Spande,
Further Alkaloids Common to Ants and Frogs: Decahydroquinolines and a Quinolizidine, J. Chem. Ecol. 25, 1179-1193 (1999).
doi: 10.1023/A:1020898229304
|
75 |
A. Barofsky, G. Pohnert,
Biosynthesis of Polyunsaturated Short Chain Aldehydes in the Diatom Thalassiosira rotula, Org. Lett. 9, 1017-1020 (2007).
doi: 10.1021/ol063051v
|
76 |
Z. Li, B. Xu, T. A. Alsup, X. Wei, W. Ning, D. G. Icenhour, M. A. Ehrenberger, I. Ghiviriga, B. Giang, J. D. Rudolf,
Cryptic Isomerization in Diterpene Biosynthesis and the Restoration of an Evolutionarily Defunct P450, J. Am. Chem. Soc. 41, 22361-22365 (2023).
doi: 10.1021/jacs.3c09446
|
77 |
A. Möllerke, D. M. Vidal, H. P. Leinaas, S. Schulz,
Socialane, a Nonaprenyl Terpene Hydrocarbon Surface Lipid from the Collembola Hypogastrura socialis, Chem. Eur. J. 30, e20240272 (2024).
doi: 10.1002/chem.202400272
|
78 |
S. Schulz, S. Toft,
Branched Long Chain Alkyl Methyl Ethers: A New Class of Lipids from Spider Silk, Tetrahedron 49, 6805-6820 (1993).
doi: 10.1016/S0040-4020(01)80424-5
|
79 |
S. Schulz, J. Fuhlendorff, H. Reichenbach,
Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus, Tetrahedron 60, 3863-3872 (2004).
doi: 10.1016/j.tet.2004.03.005
|
80 |
Z. Yin, M. Maczka, G. Schnakenburg, S. Schulz, J. Dickschat,
Enantioselective synthesis of all stereoisomers of geosmin and of biosynthetically related natural products, Org. Biomol. Chem. 22, 5748 (2024).
doi: 10.1039/d4ob00934g
|
82 |
A. Möllerke, G. Brasse, J. Bello D. M. Vidal, K. Dettner, J. Zettel, M. P. Berg, S. Scheu, H. P. Leinaas, S. Schulz,
The unique epicuticular chemistry of Collembola - A cross-species analysis, iScience 27, 110416 (2024).
doi: 10.1016/j.isci.2024.110416
|
83 |
A. Möllerke, S. Schulz,
Nitidane: An Irregular Prenylated Diterpene from the Cuticle of the Springtail Heteromurus nitidus, J. Nat. Prod. 87, 1454-1458 (2024).
doi: 10.1021/acs.jnatprod.4c00258
|
84 |
S. Schulz, C. Messer, K. Dettner,
Poduran, an unusual tetraterpene from the springtail Podura aquatica, Tetrahedron Letters 38, 2077-2080 (1997).
doi: 10.1016/S0040-4039(97)00341-9
|
85 |
J. Holste, P. Weldon, D. Boyer, S. Schulz,
The scent gland composition of the Mangshan pit viper, Protobothrops mangshanensis, Beilstein J. Org. Chem. 20, 2644-2654 (2024).
doi: 10.3762/bjoc.20.222
|
86 |
A. Möllerke, M. Stell, C. Schlawis, U. Trauer-Kizilelma, J. Herrmann, H. P. Leinaas, S. Scheu, S. Schulz,
Identification of unique highly hetero-substituted benzenes as chemical weapons of springtails by a combination of trace analytical methods with DFT calculations and synthesis, Chem. Sci. 18, 15332 (2024).
doi: 10.1039/D4SC03182B
|
87 |
K. Böröczky, H. Laatsch, I. Wagner-Döbler, K. Stritzke, S. Schulz,
Cluster Analysis as Selection and Dereplication Tool for the Identification of New Natural Compounds from Large Sample Sets, Chem. Biodivers. 3, 622-634 (2006).
doi: 10.1002/cbdv.200690065
|
88 |
R. Gries, S. K. Alamsetti, W. G. van Herk, H. A. Catton, S. Meers, E. Lemke, G. Gries,
Limoniic Acid - Major Component of the Sex Pheromones of the Click Beetles Limonius canus and L. californicus, J. Chem. Eco. 47, 123-133 (2021).
doi: 10.1007/s10886-020-01241-y
|
89 |
D. C. Weber, A. Khrimian, J. P. Ramirez Bonilla, I. M. Grettenberger, F. Guzman, A. I. Haber ,
Vittatalactone is the Male-Produced Aggregation Pheromone of the Western Striped Cucumber Beetle, Acalymma trivittatum, J. Chem. Eco. 49, 475-481 (2023).
doi: 10.1007/s10886-023-01437-y
|
90 |
Y. Ling Hu, Q. Zhang, S. He Liu, J. Li Sun, F. Zhou Yin,a Z. Ru Wang,a J. Shi, R. Hua Jiao, H. Ming Ge,
Building Streptomyces albus as a chassis for synthesis of bacterial terpenoids, Chem. Sci. 14, 3661 (2023).
doi: : 10.1039/d2sc06033g
|
91 |
R. Yamakawa, Y. Takubo, H. Shibasaki, Y. Murakami, M. Yamamoto, T. Ando,
Characterization of Epoxytrienes Derived from (3Z,6Z,9Z)-1,3,6,9-Tetraenes, Sex Pheromone Components of Arctiid Moths and Related Compounds, J. Chem. Eco. 38, 1042-1049 (2012).
doi: 10.1007/s10886-012-0165-z
|
92 |
A. Tröger, G. P. Svensson, H. Galbrecht, R. Twele, J. M. Patt, S. Bartram, P. H. G. Zarbin, K. A. Segraves, D. M. Althoff, S. von Reuss, R. A. Raguso, W. Francke ,
Tetranorsesquiterpenoids as Attractants of Yucca Moths to Yucca Flowers, J. Chem. Eco. 47, 1025-1041 (2021).
doi: 10.1007/s10886-021-01308-4
|
93 |
B. Bohman, L. Jeffares, G. Flematti, R. D. Phillips, K. W. Dixon, Rod Peakall, R. A. Barrow,
The Discovery of 2-Hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine: A Semiochemical in Orchid Pollination, Org. Lett. 14, 2576-2578 (2012).
doi: 10.1021/ol300864u
|
94 |
K. Arriola, S. Guarino, C. Schlawis, M. A. Arif, S. Colazza, E. Peri, S. Schulz, J. G. Millar,
Identification of Brassicadiene, a Diterpene Hydrocarbon Attractiveto the Invasive Stink Bug Bagrada hilaris, from Volatiles of Cauliflower Seedlings, Brassica oleracea var. botrytis, Org. Lett. 22, 2972-2975 (2020).
doi: 10.1021/acs.orglett.0c00707
|
95 |
B. Bohman, R. D. Phillips, G. R. Flematti, R. A. Barrow, R. Peakall,
The Spider Orchid Caladenia crebra Produces Sulfurous Pheromone Mimics to Attract its Male Wasp Pollinator, Angew. Chem. 56, 8455-8458 (20217).
doi: 10.1002/anie.201702864
|
96 |
M. Yamamoto, R. Maruyama, Y. Murakami, Y. Sakamoto, R. Yamakawa, T. Ando,
Characterization of posticlure and the structure-related sex pheromone candidates prepared by epoxidation of (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes, Anal. Bioanal. Chem. 405, 7405-7414 (2013).
doi: 10.1007/s00216-013-7144-2
|
97 |
B. Bohman, R. D. Phillips, M. H. M. Menz, B. W. Berntsson, G. R. Flematti, R. A. Barrow, K. W. Dixon, R. Peakall,
Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception, New Phytologist 203, 939-952 (2014).
doi: 10.1111/nph.12800
|
98 |
B. Bohman, M. M. Y. Tan, R. D. Phillips, A. Scaffidi, A. N. Sobolev, S. A. Moggach, G. R. Flematti, R. Peakall,
A Specific Blend of Drakolide and Hydroxymethylpyrazines: AnUnusual Pollinator Sexual Attractant Used by the Endangered Orchid Drakaea micrantha, Angew. Chem. 59, 1124-1128 (2019).
doi: 10.1002/anie.201911636
|
99 |
R. A. Soldi, M. A. C. M. Rodrigues, J. R. Aldrich, P. H. G. Zarbin ,
The Male-produced Sex Pheromone of the True Bug, Phthia picta, is an Unusual Hydrocarbon, J. Chem. Eco. 38, 814-824 (2012).
doi: 10.1007/s10886-012-0147-1
|
100 |
B. Gu, J. S. Dickschat,
Ruptenes: A Family of Terpene Analogs Give Insight into Cyclisation Mechanisms by Cascade Disruption, Angew. Chem. 62, e202307006 (2023).
doi: 10.1002/anie.202307006
|
101 |
H. Xu, L. Lauterbach, B. Goldfuss, G. Schnakenburg, J. S. Dickschat,
Fragmentation and [4 + 3] cycloaddition in sodorifen biosynthesis, Nat. Chem. 15, 1164-1171 (2023).
doi: 10.1038/s41557-023-01223-z
|
102 |
B. Bohman, A. M. Weinstein, R. D. Phillips, R. Peakall, G. R. Flematti,
2-(Tetrahydrofuran-2-yl)acetic Acid and Ester Derivatives as Long-Range Pollinator Attractants in the Sexually Deceptive Orchid Cryptostylis ovata, J. Nat. Prod. 82, 1107-1113 (2019).
doi: 10.1021/acs.jnatprod.8b00772
|
103 |
A. Hou, J. S. Dickschat,
The EI-MS Fragmentation Mechanisms of the Bacterial Diterpenes Polytrichastrene A and Wanju-2,5-diene, Eur. J. Org. Chem., 6417-6423 (2021).
doi: 10.1002/ejoc.202101151
|
104 |
G. Li, Y. Guo, J. S. Dickschat,
The mass spectrometric fragmentation mechanisms of catenulane and isocatenulane diterpenes, Org. Biomol. Chem. 19, 2224-2232 (2021).
doi: 10.1039/D1OB00160D
|
105 |
J. Rinkel, L. Lauterbach, J. S. Dickschat,
Spata-13,17-diene Synthase-An Enzyme with Sesqui-, Di-, and Sesterterpene Synthase Activity from Streptomyces xinghaiensis, Angew. Chem. 56, 16385-16389 (Jahr).
doi: 10.1002/anie.201711142
|
106 |
K. Arriola, W. D. Silva, L. M. Hanks, L. R. Meier, J. G. Millar,
A Polyketide Male-Produced Aggregation-Sex Pheromone Shared by the North American Cerambycid Beetle Graphisurus fasciatus and the South American Cerambycid Eutrypanus dorsalis, J. Chem. Eco. 50, 338-350 (2024).
doi: 10.1007/s10886-024-01505-x
|
107 |
Anat Levi-Zada, D. Fefer, L. Anshelevitch, A. Litovsky, M. Bengtsson, G. Gindin, V. Soroker,
Identification of the sex pheromone of the lesser date moth, Batrachedra amydraula, using sequential SPME auto-sampling, Tetrahedron Lett. 52, 4550-4553 (2011).
doi: 10.1016/j.tetlet.2011.06.091
|
108 |
T. Hayashi, B. Bohman, A. Scaffidi, R. Peakall, G. R. Flematti,
An unusual tricosatriene is crucial for male fungus gnat attraction and exploitation by sexually deceptive Pterostylis orchids, Current Biology 31, 1954-1961 (2021).
doi: 10.1016/j.cub.2021.01.095
|
109 |
P. Banks, E. M. Funkhouser, A. M. Macias, B. Lovett, S. Meador, A. Hatch, H. M. Garraffo, K. C. Cartwright, M. T. Kasson, P. E. Marek, T. H. Jones, E. Mevers,
The Chemistry of the Defensive Secretions of Three Species of Millipedes in the Genus Brachycybe, J. Chem. Eco. 50, 478-488 (2024).
doi: 10.1007/s10886-024-01518-6
|
110 |
O. Kunert, E. M. Pferschy-Wenzig, A. Orthaber, G. Raspotnig, M. Bodner,
Alkaloids from millipedes: a re-evaluation of defensive exudates from Polyzonium germanicum, Front. Ecol. Evol. 11, 1212452 (2023).
doi: 10.3389/fevo.2023.1212452/full
|
111 |
B. Bohman, A. Tröger, S. Franke, M. G. Lorenzo, W. Francke, C. R. Unelius,
Structure Elucidation and Synthesis of Dioxolanes Emitted by Two Triatoma Species (Hemiptera: Reduviidae), J. Nat. Prod. 74, 690-694 (2011).
doi: 10.1021/np100748r
|
112 |
H. Tarui, N. Mori, R. Nishida, K. Okabe, Y. Kuwahara,
3-(4-Methyl-3-pentenyl)-2(5H )-furanone, α,α-Acariolide
and 4-(4-Methyl-3-pentenyl)-2(5H )-furanone, α, β-Acariolide:
New Monoterpene Lactones from the Astigmatid Mites,
Schwiebea araujoae and Rhizoglyphus sp. (Astigmata: Acaridae), Biosci. Biotechnol. Biochem. 66, 135-140 (2002).
doi: 10.1271/bbb.66.135
|
113 |
W. Francke, W. Mackenroth, W. Schröder, S. Schulz,
Identification o f Cyclic Enolethers from Insects: Alkyldihydropyranes from Bees and A lkyldihydro-4H -pyran-4-ones from a Male Moth, Z. Naturforsch. C 40, 145-147 (1985).
doi: 10.1515/znc-1985-1-229
|
114 |
H. Xu, J. S. Dickschat,
Revision of the Cyclisation Mechanism for the Diterpene Spiroviolene and Investigations of Its Mass Spectrometric Fragmentation, Chem. Bio. Chem. 22, 850-854 (2020).
doi: 10.1002/cbic.202000682
|
115 |
H. Tao, L. Lauterbach, G. Bian, R. Chen, A. Hou, T. Mori, S. Cheng, B. Hu, L. Lu, X. Mu, M. Li, N. Adachi, M. Kawasaki, T. Moriya, T. Senda, X. Wang, Z. Deng, I. Abe, J. S. Dickschat, T. Liu,
Discovery of non-squalene triterpenes, Nature 606, 414-419 (2022).
doi: 10.1038/s41586-022-04773-3
|
116 |
F. Etl, Christian Kaiser, O. Reiser, M. Schubert, S. Dötterl,J. Schönenberger ,
Evidence for the recruitment of florivorous plant bugs as pollinators, Current Biology 32, 4688-4698 (2022).
doi: 10.1016/j.cub.2022.09.013
|
117 |
Y. Linne, A. Schönwald, S. Weißbach, M. Kalesse,
Desymmetrization of C2-Symmetric Bis(Boronic Esters) by Zweifel Olefinations, Chem. Eur. J. 26, 7961-8169 (2020).
doi: 10.1002/chem.202000599
|
118 |
S. Xu, R. Errabeli, K. Will, E. Arias, A. B. Attygalle,
3-Methyl-1-(methylthio)-2-butene: a component in the foul-smelling defensive secretion of two Ceroglossus species (Coleoptera: Carabidae), Chemoecology 29, 171-178 (2019).
doi: 10.1007/s00049-019-00286-0
|
119 |
J. P. A. Souza, D. J. Melo, A. A. C. Moliterno, L. Figueiredo, P. H. G. Zarbin,
Deciphering the Absolute Configuration of Murgantiol Isomers in the Pheromone Blend of the Rice Stink Bug, Mormidea v-luteum (Hemiptera, Pentatomidae), Chem. Bioderversity 21, e202301860 (2024).
doi: 10.1002/cbdv.202301860
|
120 |
S. Xu, R. Errabelli, D. H. Feener, K. Noble, A. B. Attygalle,
Identification of alkylpyrazines by gas chromatography mass spectrometry (GC-MS), J. Chroma. 1589, 149-161 (2019).
doi: 10.1016/j.chroma.2019.01.011
|
121 |
C. F. Fávaro, J. G. Millar, P. H. G. Zarbin,
Identification and Synthesis of the Male-produced Sex Pheromone of the Stink Bug, Pellaea stictica, J. Chem. Eco. 41, 859-868 (2015).
doi: 10.1007/s10886-015-0621-7
|
122 |
M. Yamashita, T. Kinsho,
Method for producing 2-isopropenyl-5-methyl-4-hexen-1-yl 3-methyl-2-butenoate, US 9,738,587 (2015).
|
123 |
T. Kinsho, N. Ishibashi, M. Yamashita, Y. Miyake, A. Baba, Y. Nagae,
Method for producing 2-isopropylidene-5-methyl-4-hexenyl butyrate, US 9,126,920 (2014).
|
124 |
T. Kinsho, N. Ishibashi, S. Wakamori, M. Yamashita,
(E)-2-isopropyl-5-methyl-3,5-hexadienoate compound, method for producing the same, and methods for producing (E)-2-isopropyl-5-methyl-3,5-hexadienol and (E)-2-isopropyl-5-methyl-3,5-hexadienyl carboxylate by using the same, US 9,725,400 (2016).
|
125 |
M. Yamashita, T. Kinsho ,
Methods for producing 2,6-dimethyl-1,5-heptadien-3-ol and 2,6-dimethyl-1,5-heptadien-3-yl acetate, 10,138,189 (2017).
|
|